J.K. SHAH TEST SERIES Evaluate Learn Succeed

FINAL – November 2017

STRATEGIC FINANCIAL MANAGEMENT

Test Code - P16

Branch (MULTIPLE) (Date: 25.06.2017)

(50 Marks)

Note: All questions are compulsory.

Question 1(9 Marks)

Projected Balance Sheet				
	Year 1	Year 2	Year 3	Year 4
Fixed Assets (40% of Sales)	9,600	11,520	13,824	13,824
Current Assets (20% of Sales)	4,800	5,760	6,912	6,912
Total Assets	14,400	17,280	20,736	20,736
Equity	14,400	17,280	20,736	20,736

(2 marks)

Projected Cash Flows:

	Year 1	Year 2	Year 3	Year 4
Sales	24,000	28,800	34,560	34,560
PBT (10%) of sale	2,400	2,880	3,456	3,456
PAT (70%)	1,680	2,016	2,419.20	2,419.20
Depreciation	800	960	1152	1,382
Addition to Fixed Assets	2400	2880	3456	1382
Increase in Current Assets	800	960	1,152	-
Operating cash flow	(720)	(864)	(1036.80)	(2419.20)

(2 marks)

Projected Cash Flows:

Present value of Projected Cash Flows

Cash Flows	PVF at 15%	PV
-720	0.870	-626.40
-864	0.756	-653.18
-1,036.80	0.658	<u>-682.21</u>
		-1,961.79

(2 marks)

Residual Value 2419.20/0.15 = 16,128

Present value of Residual value = $16128/(1.15)^3$

= 16128/1.521 = 10603.55

Total shareholders' value = 10,603.55 - 1,961.79 = 8,641.76

Pre strategy value = 1,400 / 0.15 = 9,333.33

 \therefore Value of strategy = 8,641.76 - 9,333.33 = -691.57

(3 marks)

Conclusion: The strategy is not financially viable

Question 2 (6 marks)

The value of Cost of Equity with the help of CAPM

$$Ke = Rf + \beta(Rm - Rf)$$

With the given data the Cost of Equity using CAPM will be:

$$Ke = 0.11 + 1.5(0.15 - 0.11)$$

$$Ke = 0.11 + 1.5(0.04) = 0.17 \text{ or } 17\%$$

The value of share using the Growth Model:

$$P = \frac{D_{0} (1 + g)}{k_{e} - g +}$$

$$P = \frac{20(1 + 0.09)}{0.17 - 0.09}$$

However, if the decision of the Board of Directors is implemented, the beta factor is likely to increase to 1.75.

Therefore,

$$K_e = 0.11 + 1.75(0.15 - 0.11)$$

$$K_e = 0.11 + 1.75(0.04) = 0.18 \text{ or } 18\%$$

The value of share using the Growth Model:

$$P = \underbrace{D \circ (1 + g)}_{k_e - g}$$

$$P = \frac{20(1 + 0.09)}{1}$$

$$P = 21.80$$

0.09 = `242.22(3 marks)

Question 3(6 Marks) (3 marks for each project)

Project A			
Probability	Utility	Utility value	
0.10	-100	-10	
0.20	-60	-12	
0.40	40	16	
0.20	30	6	
0.10	20	<u>2</u>	
		<u>2</u>	
	0.10 0.20 0.40 0.20	Probability Utility 0.10 -100 0.20 -60 0.40 40 0.20 30	

	Project B			
Cash flow	Probability	Utility	Utility value	
(in `)				
-10,000	0.10	-60	-6	
-4,000	0.15	-3	-0.45	
15,000	0.40	40	16	
5,000	0.25	20	5	
10,000	0.10	30	<u>3</u>	
			<u>17.55</u>	

Project B should be selected as its expected utility is more

Question 4 (6 marks)

(in lakhs)

	Quote	
	Α	Quote B
Calculation of Present Value (PV) of cash payments:		
Initial lease rent (PV) (1 mark)	5.00	1.00
Less: PV of tax benefit on initial payment of lease rent(1 mark)		
` 5.00 lakh x 0.30 x 0.91	(1.365)	-
` 1.00 lakh x 0.30 x 0.91	-	(0.273)
PV of Annual lease rents(1 mark)		
` 21.06 lakh x 0.7 x 2.49	36.71	-
` 19.66 lakh x 0.7 x 3.17	-	43.63
Total payments in PV	40.345	44.357
Capital Recovery Factor (reciprocal of Annuity Factor) (1 mark)		
1/2.49	0.402	-
1/3.17		0.315
Equated Annual Payment or cash outflow (`lakhs)	16.20	13.979

Conclusion: Since Quote B implies lesser equated annual cash outflow, it is better. (2 marks)

Question 5 (6 marks)

i) Current Market Price of Bond (2 marks)

Time	CF	PVIF 8% PV (CF)	PV (CF)
1	14	0.926	12.964
2	14	0.857	11.998
3	14	0.794	11.116
4	14	0.735	10.290
5	114	0.681	<u>77.634</u>
		$\sum PV (CF) i.e. P_0 =$	<u>124.002</u>
Say	l		` 124.00

ii) Minimum Market Price of Equity Shares at which Bondholder should exercise conversion option: $\frac{124.00}{20.00} = 6.20$ (2 marks)

iii) Duration of the Bond (2 marks)

Year	Cash flow	P.V.	@ 8%	Proportion of	Proportion of bond
				bond value	value x time (years)
1	14	0.926	12.964	0.105	0.105
2	14	0.857	11.998	0.097	0.194
3	14	0.794	11.116	0.089	0.267
4	14	0.735	10.290	0.083	0.332
5	114	0.681	<u>77.634</u>	<u>0.626</u>	<u>3.130</u>
			124.002	<u>1.000</u>	4.028

Question 6 (9 Marks)

J Widi Kaj						
Shares	No. of	Market	(1)* ×	% to total	ß (x)	wx
	shares	Price of Per	(2) (` lakhs)	(w)		
	(lakhs) (1)	Share (2)				
A Ltd.	3.00	500.00	1500.00	0.30	1.40	0.42
B Ltd.	4.00	750.00	3000.00	0.60	1.20	0.72
C Ltd.	2.00	250.00	500.00	<u>0.10</u>	1.60	<u>0.16</u>
			5000.00	1		<u>1.30</u>

(1) Portfolio beta

1.30 **(2marks)**

(2) Required Beta

0.91 **(2marks)**

Let the proportion of risk free securities for target beta 0.91 = p

$$0.91 = 0 \times p + 1.30 (1 - p)$$

$$p = 0.30 i.e. 30\%$$

Shares to be disposed off to reduce beta 5000 × 30%

` 1,500 lakh

(3) Number of shares of each company to be disposed off (2 marks)

Shares	% to total	Proportionate	Market Price	No. of Shares
	(w)	Amount (`lakhs)	Per Share	(Lakh)
A Ltd.	0.30	450.00	500.00	0.90
B Ltd.	0.60	900.00	750.00	1.20
C Ltd.	0.10	150.00	250.00	0.60

(4) Number of Nifty Contract to be sold (1 mark)

$$(1.30-0.91) \times 5000 \, lakh = 120 \, contracts$$

$$8,125 \times 200$$

(5) 2% rises in Nifty is accompanied by 2% x 1.30 i.e. 2.6% rise for portfolio of shares

(2 marks)

	` Lakh
Current Value of Portfolio of Shares	5000
Value of Portfolio after rise	5130
Mark-to-Market Margin paid (8125 × 0.020 × ` 200 × 120)	39
Value of the portfolio after rise of Nifty % change in value of portfolio (5091 – 5000)/ 5000 % rise in the value of Nifty Beta	5091 1.82% 2% 0.91
% rise in the value of Nifty	2

Question 7 (8 marks)

The formula for the Dividend valuation Model is

$$P0 = \frac{D1}{Ke - g} (\mathbf{1 mark})$$

Ke = Cost of Capital

g = Growth rate

 D_1 = Dividend at the end of year 1

On the basis of the information given, the following projection can be made:

				PV of DPS (Rs.)
Year	EPS (Rs.) (1 mark)	DPS (Rs.) (1 mark)	PVF @15%	(1 mark)
2015	12.00	4.80	0.870	4.176
	(9.60 x 125%)	(3.84 x 125%)		
2016	15.00	6.00	0.756	4.536
	(12.00 x 125%)	(4.80 x 125%)		

2017	16.50	8.25*	0.658	5.429
	(15.00 x 110%)	(50% of Rs.16.50)		
				 14.141

^{*}Payout Ratio changed to 50%.

After 2017, the perpetuity value assuming 10% constant annual growth is:

 D_1 = Rs. $8.25 \times 110\%$ = Rs. 9.075 (1 mark)

Therefore P_0 from the end of 2017 Rs.9.075 = Rs.181.50 (1 mark) 0.15 - 0.10

This must be discounted back to the present value, using the 3 year discount factor after 15%.

Rs. Present Value of Po (Rs. 181.50 \times 0.658)
(1 mark)

Add: PV of Dividends 2015 to 2017

Expected Market Price of Share(1 mark)

133.57
